jueves, 19 de mayo de 2011

Compuestos Orgánicos

Los compuestos estudiados pueden dividirse en:
•Compuestos alifáticos
Los hidrocarburos alifáticos son compuestos orgánicos constituidos por carbono e hidrógeno, en los cuales los átomos de carbono forman cadenas abiertas. Los hidrocarburos alifáticos de cadena abierta se clasifican en alcanosalquenos y alquinos.
Una cadena alifática alcana es una agrupación hidrocarbonada lineal con la fórmula:
CH3-(CH2)n-CH3
Si la cadena alifática se cierra formando un anillo, se denomina hidrocarburo alicíclico, hidrocarburo alifático cíclico o cicloalcano.
Los hidrocarburos alifáticos son compuestos frecuentemente utilizados como disolventes de aceitesgrasascauchoresinas, etc., en las industrias de obtención y recuperación de aceites, fabricación de pinturas, tintas, colas, adhesivos, así como, materia prima de síntesis orgánica.
•Compuestos aromáticos:
Un hidrocarburo aromático es un polímero cíclico conjugado que cumple la Regla de Hückel, es decir, que tienen un total de 4n+2electrones pi en el anillo. Para que se dé la aromaticidad, deben cumplirse ciertas premisas, por ejemplo que los dobles enlaces resonantes de la molécula estén conjugados y que se den al menos dos formas resonantes equivalentes. La estabilidad excepcional de estos compuestos y la explicación de la regla de Hückel han sido explicados cuánticamente, mediante el modelo de "partícula en un anillo"
Originalmente el término estaba restringido a un producto del alquitrán mineral, el benceno, y a sus derivados, pero en la actualidad incluye casi la mitad de todos los compuestos orgánicos; el resto son los llamados compuestos alifáticos.
El máximo exponente de la familia de los hidrocarburos aromáticos es el benceno (C6H6), pero existen otros ejemplos, como la familia deanulenoshidrocarburos monocíclicos totalmente conjugados de fórmula general (CH)n.
Entre los hidrocarburos aromáticos más importantes se encuentran todas las hormonas y vitaminas, excepto la vitamina C; prácticamente todos los condimentosperfumes y tintes orgánicos, tanto sintéticos como naturales; los alcaloides que no son alicíclicos (ciertas bases alifáticas como la putrescina a veces se clasifican incorrectamente como alcaloides), y sustancias como el trinitrotolueno (TNT) y los gases lacrimógenos. Por otra parte los hidrocarburos aromáticos suelen ser nocivos para la salud, como los llamados BTEXbenceno,toluenoetilbenceno y xileno por estar implicados en numerosos tipos de cáncer o el alfa-benzopireno que se encuentra en el humo del tabaco, extremadamente carcinógenico igualmente, ya que puede producir cáncer de pulmón.
•Compuesto Heterocidico:
Los compuestos heterocíclicos son compuestos químicos orgánicos cíclicos en los que hay al menos un átomodistinto de carbono formando parte de la estructura cíclica saturada (sin dobles enlaces) o insaturada (con dobles enlaces). Los átomos distintos de carbono presentes en el ciclo se denominan heteroátomos.
Los ciclos pueden ser de diferente tamaño; los más comunes tienen entre 3 y 6 átomos, pudiendo ser mayores. También pueden contener uno o más heteroátomos diferentes, normalmente oxígenonitrógeno o azufre. Pueden ser además aromáticos, insaturados o saturados.
La química de heterociclos tiene una enorme importancia, tanto en la industria química farmacéutica como en labioquímica y la química; por ejemplo, las bases nitrogenadas del ADN son heterociclos.
•Compuesto organometalico:
Un compuesto organometálico es un compuesto en el que los átomos de carbono forman enlaces covalentes, es decir, comparten electrones, con un átomo metálico. Los compuestos basados en cadenas y anillos de átomos de carbono se llaman orgánicos, y éste es el fundamento del nombre organometálicos. La característica de estos compuestos es la presencia de enlaces entre átomos de metal y de carbono (que pueden ser sencillos, dobles o triples) y por tanto no se consideran organometálicos aquellos compuestos en que un metal se une a una molécula o fragmento por un átomo distinto del carbono, como ocurre en algunos compuestos de coordinación. Este grupo incluye un elevado número de compuestos y algunos químicos lo consideran un grupo distinto al de los compuestos orgánicos e inorgánicos.
Formalmente, los compuestos organometálicos son aquellos que poseen, de forma directa, enlaces entre átomos de metal (o metaloides) y átomos de carbono, M–C, de mayor o menor polaridad.1 Es decir, un compuesto es considerado como organometálico si este contiene al menos un enlace carbono-metal. En este contexto el sufijo “metálico” es interpretado ampliamente para incluir tanto a algunos no metales (como el fósforo) y metaloides tales como B, Si y As así como a metales verdaderos. Esto es debido a que en muchos casos la química de los elementos B, Si, P y As se asemeja a la química de los metales homólogos respectivos. Por lo tanto, el término de compuestos organometálicos es también usado ocasionalmente para incluir dentro a los ya mencionados no metales y semimetales. En todos los casos se trata de elementos menoselectronegativos que el carbono
• Polímeros: 
Los polímeros son macromoléculas (generalmente orgánicas) formadas por la unión de moléculas más pequeñas llamadas monómeros.

Alquenos


Los alquenos son hidrocarburos que tienen un doble enlace carbono = carbono (C=C) en su estructura.
Nomenclatura de los Alquenos:
* La cadena principal es la que tiene mayor número de dobles enlaces.
* Se empiezan a contar los localizadores de forma que el número que asignemos al enlace sea el menor.
* Se nombran igual que los alcanos sustituyendo el sufijo -ano por -eno indicando el localizador del doble enlace.
Propiedades físicas y químicas de los alquenos
Propiedades físicas
Son similares a las de los alcanos
Propiedades químicas
Debido a la presencia del doble enlace estos compuestos son mucho más reactivos que los alcanos. Entre las reacciones más características, se encuentran:
    La adición al doble enlace. Se le añade una molécula rompiendo el doble enlace. * Polimerización. Los alquenos pueden polimerizarse fácilmente, para ello al calentarlos y en presencia de catalizadores se rompe el doble enlace formando unas especies químicas inestables. Estas especies químicas se unen entre sí, formando largas cadenas que son los polimeros.

ESTEREOQUÍMICA

Definición de isómero
Se llaman isómeros a aquellas moléculas que poseen la misma fórmula molecular pero diferente estructura. Se clasifican en isómeros estructurales y estereoisómeros.
Isómeros estructurales
Los isómeros estructurales difieren en la forma de unir los átomos y a su vez se clasifican en isómeros de cadena de posición y de función.
Estereoisómeros
Los estereoisómeros tienen todos los enlaces idénticos y se diferencian por la disposición espacial de los grupos. Se clasifican en isómeros cis - trans o geométricos, enantiómeros y diastereoisómeros.
Centro quiral o asimétrico
>Se llama centro quiral o asimétrico a un átomo unido a cuatro sustituyentes diferentes. Una molécula que posee 
un centro quiral tiene una imagen especular no superponible con ella, denominada enantiómero.
Actividad óptica
Los enantiómeros poseen casi todas las propiedades físicas idénticas, con la excepción de la actividad óptica. Uno de los enantiómeros produce rotación de la luz polarizada a la derecha (dextrógiro) y el otro rota la luz polarizada a la izquierda (levógiro).
Estereoquímica en reacciones
Las reacciones de halogenación radicalaria sobre moléculas en las que puedan formarse centros quirales producen mezclas de enantiómeros en igual cantidad o de diastereoisómeros en distinta proporción.
Separación de enantiómeros
Los enantiómeros tienen casi todas las propiedades físicas iguales, difieren en la rotación de la luz polarizada, pero poseen el mismo punto de fusión y ebullición e idéntica solubilidad. Por tanto, no les podemos aplicar los metodos tradicionales de separación y hay que recurrir a técnicas especiales. La separación vía diastereoisómeros, consiste en transformar la mezcla de enantiomeros en mezcla de diastereoisómeros por adición de un reactivo quiral, los diastereoisómeros son fácilmente separables por métodos físicos.

REACCIONES RADICALARIAS

Reacción de alcanos con halógenos
Los alcanos reaccionan con halógenos mediante mecanismos radicalarios. Dicha reacción supone la sustitución de uno o varios hidrógenos del alcano por halógenos.
 
Mecanismo de la halogenación radicalaria
El mecanismo de la halogenación radicalaria consta de tres etapas: iniciación, propagación y terminación. En la iniciación la molécula de halógeno rompe de forma homolítica generando radicales. En la etapa de propagación se produce la sustitución de hidrógenos del alcano por halógenos. Cuando los reactivos se agotan, los radicales que hay en el medio se unen entre si, produciéndose la etapa de teminación.
Reactividad de los halógenos
La primera etapa de propagación determina la velocidad de la reacción.  Para el flúor esta etapa es de baja energía de activación lo que convierte al flúor en el halógeno mas reactivo. En el caso del yodo la energía de activación es muy elevada y la reacción no se produce. Orden de reactividad en reacciones radicalarias : F2>Cl2>Br2>I2 En resumen, el yodo no es reactivo en la halogenación radicalaria y el flúor reacciona de forma violenta.
Polialogenaciones
La reacción de halogenación es difícil de parar, puesto que el producto halogenado es más reactivo que el alcano de partida. Para evitar esté problema, llamado polihalogenaciones, se utiliza exceso del alcano.
Estabilidad de radicales
El mecanismo de estas reacciones transcurre con formación de un intermedio llamado radical cuya estabilidad depende del número de sustituyentes que rodean el carbono que contiene el electrón solitario. Los radicales formados en la etapa de propagación se estabilizan por hiperconjugación. El orden de estabilidad de los radicales viene dado por: terciarios > secundarios > primarios.

ALCANOS

Tipos de alcanos
Los alcanos son hidrocarburos (formados por carbono e hidrógeno) que solo contienen enlaces simples carbono-carbono. Se clasifican en lineales, ramificados, cíclicos y policíclicos.
Nomenclatura de alcanos
Los alcanos se nombran terminando en -ano el prefijo que indica el número de carbonos de la molécula (metano, etano, propano...)
Propiedades físicas de los alcanos
Los puntos de fusión y ebullición de alcanos son bajos y aumentan a medida que crece el número de carbonos debido a interacciones entre moléculas por fuerzas de London. Los alcanos lineales tienen puntos de ebullición más elevados que sus isómeros ramificados.
Isómeros conformacionales
Los alcanos no son rígidos debido al giro alrededor del enlace C-C. Se llaman conformaciones a las múltiples formas creadas por estas rotaciones.
Proyección de Newman
La energía de las diferentes conformaciones puede verse en las proyecciones de Newman. Así en el caso del etano la conformación eclipsada es la de mayor energía, debido a las repulsiones entre hidrógenos.
Diagramas de energía potencial
Las diferentes conformaciones de los alcanos se puede representar en un diagrama de energía potencial donde podemos ver que conformación es más estable (mínima energía) y la energía necesaria para pasar de unas conformaciones a otras.
Combustión de alcanos
Dada su escasa reactividad los alcanos también se denominan parafinas.  Las reacciones más importantes de este grupo de compuestos son las halogenaciones radicalarias y la combustión. La combustión es la combinación del hidrocarburo con oxígeno, para formar dióxido de carbono y agua

Diferencias entre química inorgánica a la química orgánica

Funciones Organicas

Hidrocarburos,Radicales, Isómeros y Oxigenados

Hidrocarburos.-El compuesto más simple es el metano, un átomo de carbono con cuatro de hidrógeno (valencia = 1), pero también puede darse la unión carbono-carbono, formando cadenas de distintos tipos, ya que pueden darse enlaces simples, dobles o triples. Cuando el resto de enlaces de estas cadenas son con hidrógeno, se habla de hidrocarburos, que pueden ser:
Radicales.-Los radicales son fragmentos de cadenas de carbonos que cuelgan de la cadena principal. Su nomenclatura se hace con la raíz correspondiente (en el caso de un carbono met-, dos carbonos et-...) y el sufijo -il. Además, se indica con un número, colocado delante, la posición que ocupan. El compuesto más simple que se puede hacer con radicales es el 2-metilpropano. En caso de que haya más de un radical, se nombrarán por orden alfabético de las raíces. Por ejemplo, el 2-etil, 5-metil, 8-butil, 10-docoseno. Los dobles y triples enlaces tienen preferencia sobre ellos.
Isómeros.-Ya que el carbono puede enlazarse de diferentes maneras, una cadena puede tener diferentes configuraciones de enlace dando lugar a los llamados isómeros, moléculas con la misma fórmula química pero con distintas estructuras y propiedades.
Oxigenados.-Son cadenas de carbonos con uno o varios átomos de oxígeno. Pueden ser:

La química del carbono

La gran cantidad de compuestos orgánicos que existen tiene su explicación en las características del átomo de carbono, que tiene cuatro electrones en su capa de valencia: según la regla del octeto necesita ocho para completarla, por lo que forma cuatro enlaces (valencia = 4) con otros átomos. Esta especial configuración electrónica da lugar a una variedad de posibilidades de hibridación orbital del átomo de Carbono (hibridación química).La molécula orgánica más sencilla que existe es el Metano. En esta molécula, el Carbono presenta hibridación sp3, con los átomos de hidrógeno formando un tetraedro.

¿Cómo se construyen las moléculas?

La parte más importante de la química orgánica es la síntesis de moléculas. Los compuestos que contienen carbono se denominaron originalmente orgánicos porque se creía que existían únicamente en los seres vivos. Sin embargo, pronto se vio que podían prepararse compuestos orgánicos en el laboratorio a partir de sustancias que contuvieran carbono procedentes de compuestos inorgánicos. En el año 1828, Friedrech Wöhler consiguió convertir cianato de plomo en urea por tratamiento con amoniaco acuoso. Así, una sal inorgánica se convirtió en un producto perteneciente a los seres vivos (orgánico). A día de hoy se han sintetizado más de diez millones de compuestos orgánicos.

Grupos funcionales en química orgánica

Los compuestos más simples de la química orgánica, formados sólo por carbono e hidrógeno. Se describe su nomenclatura,  propiedades físicas y reactividad. Después se estudian los cicloalcanos, especialmente el ciclohexano. En el tema de estereoisomería se consideran las distintas formas espaciales que los compuestos pueden adoptar y las relaciones que existen entre ellos. Continuamos el estudio de la química orgánica con dos reacciones básicas: sustitución y eliminación, que son la base para la obtención de gran parte de los compuestos orgánicos. A partir de este punto se describen los principales tipos de compuestos orgánicos clasificados según su reactividad: alquenos, alquinos, alcoholes, éteres, aldehídos, cetonas, benceno, ácidos carboxílicos, haluros de alcanoilo, anhídridos, ésteres, nitrilos, amidas, aminas.

una manera mas fácil de entender...

con éste video se te hará mas fácil el tema.http://www.youtube.com/watch?v=zOI26t8ha4M

Importancia de la química orgánica

Los seres vivos estamos formados por moléculas orgánicas, proteínas, ácidos nucleicos, azúcares y grasas. Todos ellos son compuestos cuya base principal es el carbono. Los productos orgánicos están presentes en todos los aspectos de nuestra vida: la ropa que vestimos, los jabones, champús, desodorantes, medicinas, perfumes, utensilios de cocina, la comida, etc.

miércoles, 18 de mayo de 2011

¿Que es la quimica organica?

La Química Orgánica es la rama de la química que estudia una clase numerosa de moléculas que contienen carbono formando enlaces covalentes carbono-carbono o carbono-hidrógeno, también conocidos como compuestos orgánicos.